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Lecture 2: QCD in e+e− annihilation
and infrared safety

• e+e− annihilation

• Shape variables

• Parton branching
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e+e− annihilation cross section

• e+e− → µ+µ− is a fundamental electroweak processes. Same type of process, e+e− → qq̄,
will produce hadrons. Cross sections are roughly proportional.

• Since formation of hadrons is non-perturbative, how can PT give hadronic cross section? This
can be understood by visualizing event in space-time:

• e+ and e− collide to form γ or Z0 with virtual mass Q =
√

s. This fluctuates into
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qq̄, qq̄g,. . . , occupy space-time volume ∼ 1/Q. At large Q, rate for this short-distance
process given by PT.

• Subsequently, at much later time ∼ 1/Λ, produced quarks and gluons form hadrons. This
modifies outgoing state, but occurs too late to change original probability for event to
happen.

• Well below Z0, process e+e− → ff̄ is purely electromagnetic, with lowest-order (Born) cross
section (neglecting quark masses)

σ0 =
4πα2

3s
Q2

f

Thus (3 = N = number of possible qq̄ colours)

R ≡ σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
=

P
q σ(e+e− → qq̄)

σ(e+e− → µ+µ−)
= 3

X
q

Q2
q .
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• On Z0 pole,
√

s = MZ , neglecting γ/Z interference

σ0 =
4πα2κ2

3Γ2
Z

(a
2
e + v

2
e) (a

2
f + v

2
f )

where κ =
√

2GF M2
Z/4πα = 1/ sin2(2θW ) � 1.5. Hence

RZ =
Γ(Z → hadrons)

Γ(Z → µ+µ−)
=

P
q Γ(Z → qq̄)

Γ(Z → µ+µ−)
=

3
P

q(a2
q + v2

q)

a2
µ + v2

µ

• Measured cross section is about 5% higher than σ0, due to QCD corrections. For massless
quarks, corrections to R and RZ are equal. To O(αS) we have:

– R.K.Ellis, Fermilab, February 2005 – 3



• Real emission diagrams (b):

• Write 3-body phase-space integration as

dΦ3 = [...]dα dβ dγ dx1 dx2 ,

α, β, γ are Euler angles of 3-parton plane, x1 = 2p1 · q/q2 = 2Eq/
√

s,

x2 = 2p2 · q/q2 = 2Eq̄/
√

s.
• Applying Feynman rules and integrating over Euler angles:

σ
qq̄g

= 3σ0CF
αS
2π

Z
dx1 dx2

x2
1 + x2

2
(1 − x1)(1 − x2)

.

Integration region: 0 ≤ x1, x2, x3 ≤ 1 where x3 = 2k · q/q2 = 2Eg/
√

s =
2 − x1 − x2.
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• Integral divergent at x1,2 = 1:

1 − x1 =
1

2
x2x3(1 − cos θqg)

1 − x2 =
1

2
x1x3(1 − cos θq̄g)

Divergences: collinear when θqg → 0 or θq̄g → 0; soft when Eg → 0, i.e. x3 → 0.
Singularities are not physical – simply indicate breakdown of PT when energies and/or
invariant masses approach QCD scale Λ.
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• Collinear and/or soft regions do not in fact make important contribution to R. To see this,
make integrals finite using dimensional regularization, D = 4 − 2ε. Then

σqq̄g = 2σ0
αS
π

H(ε)

×
Z

dx1dx2
P (x1, x2)

h(1 − ε)(x2
1 + x2

2) + 2ε(1 − x3)

[(1 − x1)(1 − x2)]
− 2ε

i

where H(ε) =
3(1 − ε)(4π)2ε

(3 − 2ε)Γ(2 − 2ε)
= 1 + O(ε) .

and P (x1, x2) = [(1 − x1)(1 − x2)(1 − x3)
iε

Hence

σ
qq̄g

= 2σ0
αS
π

H(ε)

»
2

ε2
+

3

ε
+

19

2
− π

2
+ O(ε)

–
.

• Soft and collinear singularities are regulated, appearing instead as poles at D = 4.
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• Virtual gluon contributions (a): using dimensional regularization again

σqq̄ = 3σ0


1 +

2αS
3π

H(ε)

»
− 2

ε2
− 3

ε
− 8 + π2 + O(ε)

–ff
.

• Adding real and virtual contributions, poles cancel and result is finite as ε → 0:

R = 3
X
q

Q2
q


1 +

αS
π

+ O(α2
S)

ff
.

Thus R is an infrared safe quantity.

• Coupling αS evaluated at renormalization scale µ. UV divergences in R cancel to O(αS), so

coefficient of αS independent of µ. At O(α2
S) and higher, UV divergences make coefficients

renormalization scheme dependent:

R = 3 KQCD

X
q

Q
2
q ,

KQCD = 1 +
αS(µ2)

π
+
X
n≥2

Cn

„
s

µ2

«  
αS(µ2)

π

!n
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• In MS scheme with scale µ =
√

s,

C2(1) =
365

24
− 11ζ(3) − [11 − 8ζ(3)]

Nf

12

� 1.986 − 0.115Nf

Coefficient C3 is also known.

• Scale dependence of C2, C3 . . . fixed by requirement that, order-by-order, series should be
independent of µ. For example

C2

„
s

µ2

«
= C2(1) − β0

4
log

s

µ2

where β0 = 4πb = 11 − 2Nf/3.

• Scale and scheme dependence only cancels completely when series is computed to all orders.

Scale change at O(αn
S) induces changes at O(αn+1

S
). The more terms are added, the more

stable is prediction with respect to changes in µ.

– R.K.Ellis, Fermilab, February 2005 – 8



• Residual scale dependence is an important source of uncertainty in QCD predictions. One can
vary scale over some ‘physically reasonable’ range, e.g.

√
s/2 < µ < 2

√
s, to try to quantify

this uncertainty, but there is no real substitute for a full higher-order calculation.
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Shape distributions

• Shape variables measure some aspect of shape of hadronic final state, e.g. whether it is pencil-like,
planar, spherical etc.

• For dσ/dX to be calculable in PT, shape variable X should be infrared safe, i.e. insensitive to
emission of soft or collinear particles. In particular, X must be invariant under pi → pj + pk
whenever pj and pk are parallel or one of them goes to zero.

• Examples are Thrust and C-parameter:

T = max

P
i |pi · n|P

i |pi|

C =
3

2

P
i,j |pi| |pj| sin2 θij

(
P

i |pi|)2

After maximization, unit vector n defines thrust axis.

• In Born approximation final state is qq̄ and 1−T = C = 0. Non-zero contribution at O(αS)

comes from e+e− → qq̄g. Recall distribution of xi = 2Ei/
√

s:

1

σ

d2σ

dx1dx2
= CF

αS
2π

x2
1 + x2

2
(1 − x1)(1 − x2)

.
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Distribution of shape variable X is obtained by integrating over x1 and x2 with constraint
δ(X−fX(x1, x2, x3 = 2−x1−x2)), i.e. along contour of constant X in (x1, x2)-plane.

• For thrust, fT = max{x1, x2, x3} and we find

1

σ

dσ

dT
= CF

αS
2π

»
2(3T2 − 3T + 2)

T (1 − T )
log

„
2T − 1

1 − T

«

−3(3T − 2)(2 − T )

(1 − T )

–
.

This diverges as T → 1, due to soft and collinear gluon singularities. Virtual gluon contribution
is negative and proportional to δ(1 − T ), such that correct total cross section is obtained after

integrating over 2
3 ≤ T ≤ 1, the physical region for two- and three-parton final states.

• O(α2
S) corrections also known. Comparisons with data provide test of QCD matrix elements,

through shape of distribution, and measurement of αS , from overall rate. Care must be taken
near T = 1 where (a) hadronization effects become large, and (b) large higher-order terms of

the form αn
S log2n−1(1 − T )/(1 − T ) appear in O(αn

S).
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• Figure shows thrust distribution measured at LEP1 (DELPHI data) compared with theory for
vector gluon (solid) or scalar gluon (dashed).
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Parton branching

• Leading soft and collinear enhanced terms in QCD matrix elements (and corresponding virtual
corrections) can be identified and summed to all orders. Consider splitting of outgoing parton a
into b + c.

• Can assume p2
b, p2

c � p2
a ≡ t. Opening angle is θ = θa + θb, energy fraction is

z = Eb/Ea = 1 − Ec/Ea .

• For small angles

t = 2EbEc(1 − cos θ) = z(1 − z)E
2
aθ

2
,

θ =
1

Ea

s
t

z(1 − z)
=

θb
1 − z

=
θc

z
.
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g → gg branching:

• Amplitude has triple-gluon vertex factor

gfABCεαaε
β
b

ε
γ
c [gαβ(pa − pb)γ + gβγ(pb − pc)α + gγα(pc − pa)β]

ε
µ
i

is polarization vector for gluon i. All momenta defined as outgoing here, so pa =
−pb − pc. Using this and εi · pi = 0, vertex factor becomes

−2gfabc[(εa · εb)(εc · pb) − (εb · εc)(εa · pb) − (εc · εa)(εb · pc)] .

• Resolve polarization vectors into ε in
i in plane of branching and ε out

i normal to plane, so
that

ε in
i · ε in

j = ε out
i · ε out

j = −1

ε
in
i · ε

out
j = ε

out
i · pj = 0 .
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• For small θ, neglecting terms of order θ2, we have

ε in
a · pb = −Ebθb = −z(1 − z)Eaθ

ε
in
b · pc = +Ecθ = (1 − z)Eaθ

ε in
c · pb = −Ebθ = −zEaθ .

• Vertex factor proportional to θ, together with propagator factor of 1/t ∝ 1/θ2, gives 1/θ
collinear singularity in amplitude.

• (n + 1)-parton matrix element squared (in small-angle region) is given in terms of that for
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n partons:

|Mn+1|2 ∼ 4g2

t
CAF (z; εa, εb, εc)|Mn|2

where colour factor CA = 3 comes from fABCfABC and functions F are given below

εa εb εc F (z; εa, εb, εc)

in in in (1 − z)/z + z/(1 − z) + z(1 − z)
in out out z(1 − z)
out in out (1 − z)/z
out out in z/(1 − z)

• Sum/averaging over polarizations gives

CA 〈F 〉 ≡ P̂gg(z) = CA

»
1 − z

z
+

z

1 − z
+ z(1 − z)

–
.

This is (unregularized) gluon splitting function.
• Enhancements at z → 0 (b soft) and z → 1 (c soft) due to soft gluon polarized in plane

of branching.
• Correlation between polarization and plane of branching (angle φ):

Fφ ∝
X
εb,c

| cos φM(ε in
a , εb, εc) + sin φM(ε out

a , εb, εc)|2
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=
1 − z

z
+

z

1 − z
+ z(1 − z) + z(1 − z) cos 2φ .

Hence branching in plane of gluon polarization preferred.

• Consider next g → qq̄ branching:

• Vertex factor is

−igūbγµε
µ
avc

where ub and vc are quark and antiquark spinors.
• Spin-averaged splitting function is

TR 〈F 〉 ≡ P̂qg(z) = TR [z2 + (1 − z)2] .

No soft (z → 0 or 1) singularities since these are associated only with gluon emission.
• Vector quark-gluon coupling implies (for mq � 0) q and q̄ helicities always opposite

(helicity conservation).
• Correlation between gluon polarization and plane of branching:

Fφ = z2 + (1 − z)2 − 2z(1 − z) cos 2φ

i.e. strong preference for splitting perpendicular to polarization.

• Branching q → qg:
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• Spin-averaged splitting function is

CF 〈F 〉 ≡ P̂qq(z) = CF
1 + z2

1 − z
.

• Helicity conservation ensures that quark does not change helicity in branching.
• Gluon polarized in plane of branching preferred, polarization angular correlation being

Fφ =
1 + z2

1 − z
+

2z

1 − z
cos 2φ .
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Phase space

• Phase space factors before and after branching are related by

dΦn+1 = dΦn
1

4(2π)3
dt dz dφ .

• Hence cross sections before and after branching are related by

dσn+1 = dσn
dt

t
dz

dφ

2π

αS
2π

CF

where C and F are colour factor and polarization-dependent z-distribution introduced earlier.
Integrating over azimuthal angle gives

dσn+1 = dσn
dt

t
dz

αS
2π

P̂ba(z) .

where P̂ba(z) is a → b splitting function.
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4-jets angular distribution

• Angular correlations are illustrated by the angular distribution in e+e− → 4 jets. Bengtsson-
Zerwas angle χBZ is angle between the planes of two lowest and two highest energy jets:

cos χBZ =
(p1 × p2) · (p3 × p4)

|p1 × p2| |p3 × p4|
.
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• Lowest-order diagrams for 4-jet production shown below. Two hardest jets tend to follow
directions of primary qq̄.

• “Double bremsstrahlung” diagrams give negligible correlations.
• g → qq̄ give strong anti-correlation (“Abelian” curve), because gluon tends to be polarized

in plane of primary jets and prefers to split perpendicular to polarization.
• g → gg occurs more often parallel to polarization. Although its correlation is much weaker

than in g → qq̄, g → gg is dominant in QCD due to larger colour factor and soft gluon
enhancements.

• Thus B-Z angular distribution is flatter than in an Abelian theory.
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Recap

• Asymptotic freedom implies that IR-safe quantities can be calculated in perturbation theory.

• Residual scale dependence is formally small, and often also small in practice.

• Shape distributions, (such as Thrust) can be used to measure αs.

• In the leading approximation the emission of collinear/soft radiation is described by a splitting
function.
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